Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38526884

RESUMO

Joint hyper-resistance is a common symptom in neurological disorders. It has both neural and non-neural origins, but it has been challenging to distinguish different origins based on clinical tests alone. Combining instrumented tests with parameter identification based on a neuromechanical model may allow us to dissociate the different origins of joint hyper-resistance in individual patients. However, this requires that the model captures the underlying mechanisms. Here, we propose a neuromechanical model that, in contrast to previously proposed models, accounts for muscle short-range stiffness (SRS) and its interaction with muscle tone and reflex activity. We collected knee angle trajectories during the pendulum test in 15 children with cerebral palsy (CP) and 5 typically developing children. We did the test in two conditions - hold and pre-movement - that have been shown to alter knee movement. We modeled the lower leg as an inverted pendulum actuated by two antagonistic Hill-type muscles extended with SRS. Reflex activity was modeled as delayed, linear feedback from muscle force. We estimated neural and non-neural parameters by optimizing the fit between simulated and measured knee angle trajectories during the hold condition. The model could fit a wide range of knee angle trajectories in the hold condition. The model with personalized parameters predicted the effect of pre-movement demonstrating that the model captured the underlying mechanism and subject-specific deficits. Our model may help with the identification of neural and non-neural origins of joint hyper-resistance and thereby opens perspectives for improved diagnosis and treatment selection in children with spastic CP, but such applications require further studies to establish the method's reliability.


Assuntos
Paralisia Cerebral , Espasticidade Muscular , Criança , Humanos , Reprodutibilidade dos Testes , Movimento , Joelho , Músculo Esquelético/fisiologia
2.
J Physiol ; 602(7): 1297-1311, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493355

RESUMO

The wide variation in muscle fibre type distribution across individuals, along with the very different energy consumption rates in slow versus fast muscle fibres, suggests that muscle fibre typology contributes to inter-individual differences in metabolic rate during exercise. However, this has been hard to demonstrate due to the gap between a single muscle fibre and full-body exercises. We investigated the isolated effect of triceps surae muscle contraction velocity on whole-body metabolic rate during cyclic contractions in individuals a priori selected for their predominantly slow (n = 11) or fast (n = 10) muscle fibre typology by means of proton magnetic resonance spectroscopy (1H-MRS). Subsequently, we examined their whole-body metabolic rate during walking and running at 2 m/s, exercises with comparable metabolic rates but distinct triceps surae muscle force and velocity demands (walking: low force, high velocity; running: high force, low velocity). Increasing triceps surae contraction velocity during cyclic contractions elevated net whole-body metabolic rate for both typology groups. However, the slow group consumed substantially less net metabolic energy at the slowest contraction velocity, but the metabolic difference between groups diminished at faster velocities. Consistent with the more economic force production during slow contractions, the slow group exhibited lower metabolic rates than the fast group while running, whereas metabolic rates were similar during walking. These findings provide important insights into the influence of muscle fibre typology on whole-body metabolic rate and emphasize the importance of considering muscle mechanical demands to understand muscle fibre typology related differences in whole-body metabolic rates. KEY POINTS: Muscle fibre typology is often suggested to affect whole-body metabolic rate, yet convincing in vivo evidence is lacking. Using isolated plantar flexor muscle contractions in individuals a priori selected for their predominantly slow or fast muscle fibre typology, we demonstrated that having predominantly slow muscle fibres provides a metabolic advantage during slow muscle contractions, but this benefit disappeared at faster contractions. We extended these results to full-body exercises, where we demonstrated that higher proportions of slow fibres associated with better economy during running but not when walking. These findings provide important insights into the influence of muscle fibre typology on whole-body metabolic rate and emphasize the importance of considering muscle mechanical demands to understand muscle fibre typology related differences in whole-body metabolic rate.


Assuntos
Contração Muscular , Corrida , Humanos , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Fibras Musculares Esqueléticas , Perna (Membro) , Corrida/fisiologia
3.
medRxiv ; 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37986791

RESUMO

Background: Joint hyper-resistance is a common symptom in cerebral palsy (CP). It is assessed by rotating the joint of a relaxed patient. Joint rotations also occur when perturbing functional movements. Therefore, joint hyper-resistance might contribute to reactive balance impairments in CP. Aim: To investigate relationships between altered muscle responses to isolated joint rotations and perturbations of standing balance in children with CP. Methods & procedures: 20 children with CP participated in the study. During an instrumented spasticity assessment, the ankle was rotated as fast as possible from maximal plantarflexion towards maximal dorsiflexion. Standing balance was perturbed by backward support-surface translations and toe-up support-surface rotations. Gastrocnemius, soleus, and tibialis anterior electromyography was measured. We quantified reduced reciprocal inhibition by plantarflexor-dorsiflexor co-activation and the neural response to stretch by average muscle activity. We evaluated the relation between muscle responses to ankle rotation and balance perturbations using linear mixed models. Outcomes & results: Co-activation during isolated joint rotations and perturbations of standing balance was correlated across all levels. The neural response to stretch during isolated joint rotations and balance perturbations was not correlated. Conclusions & implications: Reduced reciprocal inhibition during isolated joint rotations might be a predictor of altered reactive balance control strategies.

4.
J Biomech ; 155: 111657, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37285780

RESUMO

Both the Hill and the Huxley muscle models had already been described by the time the International Society of Biomechanics was founded 50 years ago, but had seen little use before the 1970s due to the lack of computing. As computers and computational methods became available in the 1970s, the field of musculoskeletal modeling developed and Hill type muscle models were adopted by biomechanists due to their relative computational simplicity as compared to Huxley type muscle models. Muscle forces computed by Hill type muscle models provide good agreement in conditions similar to the initial studies, i.e. for small muscles contracting under steady and controlled conditions. However, more recent validation studies have identified that Hill type muscle models are least accurate for natural in vivo locomotor behaviours at submaximal activations, fast speeds and for larger muscles, and thus need to be improved for their use in understanding human movements. Developments in muscle modelling have tackled these shortcomings. However, over the last 50 years musculoskeletal simulations have been largely based on traditional Hill type muscle models or even simplifications of this model that neglected the interaction of the muscle with a compliant tendon. The introduction of direct collocation in musculoskeletal simulations about 15 years ago along with further improvements in computational power and numerical methods enabled the use of more complex muscle models in simulations of whole-body movement. Whereas Hill type models are still the norm, we may finally be ready to adopt more complex muscle models into musculoskeletal simulations of human movement.


Assuntos
Modelos Biológicos , Músculo Esquelético , Humanos , Músculo Esquelético/fisiologia , Fenômenos Biomecânicos , Tendões/fisiologia , Movimento
5.
J Appl Biomech ; 39(5): 284-293, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37348849

RESUMO

In this review, we elaborate on how musculoskeletal (MSK) modeling combined with dynamic movement simulation is gradually evolving from a research tool to a promising in silico tool to assist medical doctors and physical therapists in decision making by providing parameters relating to dynamic MSK function and loading. This review primarily focuses on our own and related work to illustrate the framework and the interpretation of MSK model-based parameters in patients with 3 different conditions, that is, degenerative joint disease, cerebral palsy, and adult spinal deformities. By selecting these 3 clinical applications, we also aim to demonstrate the differing levels of clinical readiness of the different simulation frameworks introducing in silico model-based biomarkers of motor function to inform MSK rehabilitation and treatment, with the application for adult spinal deformities being the most recent of the 3. Based on these applications, barriers to clinical integration and positioning of these in silico technologies within standard clinical practice are discussed in the light of specific challenges related to model assumptions, required level of complexity and personalization, and clinical implementation.

6.
Front Aging Neurosci ; 15: 1130707, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998319

RESUMO

Introduction: Stepping accuracy, speed, and stability are lower in older compared to young adults. Lower stepping performance in older adults may be due to larger accuracy-speed-stability trade-offs because of reduced ability to simultaneously fulfill these task-level goals. Our goal was to evaluate whether trade-offs are larger in older compared to young adults in a targeted stepping task. Since sensorimotor function declines with age, our secondary goal was to evaluate whether poorer sensorimotor function was associated with larger trade-offs. Methods: Twenty-five young (median 22 years old) and 25 older (median 70 years old) adults stepped into projected targets in conditions with various levels of accuracy, speed, and stability requirements. We determined trade-offs as the change in performance, i.e., foot placement error, step duration, and mediolateral center of pressure path length, between each of these conditions and a control condition. To assess age-related differences in the magnitude of trade-offs, we compared the change in performance between age groups. Associations between trade-offs and measures of sensorimotor function were tested using correlations. Results: We found an accuracy-speed and an accuracy-stability trade-off in both young and older adults, but trade-offs were not different between young and older adults. Inter-subject differences in sensorimotor function could not explain inter-subject differences in trade-offs. Conclusion: Age-related differences in the ability to combine task-level goals do not explain why older adults stepped less accurate and less stable than young adults. However, lower stability combined with an age-independent accuracy-stability trade-off could explain lower accuracy in older adults.

7.
J Appl Physiol (1985) ; 134(2): 395-404, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36603047

RESUMO

Hundred years ago, Fenn demonstrated that when a muscle shortens faster, its energy liberation increases. Fenn's results were the first of many that led to the general understanding that isometric muscle contractions are energetically cheaper than concentric contractions. However, this evidence is still primarily based on single fiber or isolated (ex vivo) muscle studies and it remains unknown whether this translates to whole body metabolic rate. In this study, we specifically changed the contraction velocity of the ankle plantar flexors and quantified the effects on triceps surae muscle activity and whole body metabolic rate during cyclic plantar flexion (PF) contractions. Fifteen participants performed submaximal ankle plantar flexions (∼1/3 s activation and ∼2/3 s relaxation) on a dynamometer at three different ankle angular velocities: isometric (10° PF), isokinetic at 30°/s (5-15° PF), and isokinetic at 60°/s (0-20° PF) while target torque (25% MVC) and cycle frequency were kept constant. In addition, to directly determine the effect of ankle angular velocity on muscle kinematics we collected gastrocnemius medialis muscle fascicle ultrasound data. As expected, increasing ankle angular velocity increased gastrocnemius medialis muscle fascicle contraction velocity and positive mechanical work (P < 0.01), increased mean and peak triceps surae muscle activity (P < 0.01), and considerably increased net whole body metabolic rate (P < 0.01). Interestingly, the increase in triceps surae muscle activity with fast ankle angular velocities was most pronounced in the gastrocnemius lateralis (P < 0.05). Overall, our results support the original findings from Fenn in 1923 and we demonstrated that greater triceps surae muscle contraction velocities translate to increased whole body metabolic rate.NEW & NOTEWORTHY Single muscle fiber studies or research on isolated (ex vivo) muscles demonstrated that faster concentric muscle contractions yield increased energy consumption. Here we translated this knowledge to muscle activation and whole body metabolic rate. Increasing ankle angular velocity increased triceps surae contraction velocity and mechanical work, increasing triceps surae muscle activity and substantially elevating whole body metabolic rate. Additionally, we demonstrated that triceps surae muscle activation strategy depends on the mechanical demands of the task.


Assuntos
Contração Muscular , Músculo Esquelético , Humanos , Músculo Esquelético/fisiologia , Contração Muscular/fisiologia , Contração Isométrica/fisiologia , Perna (Membro) , Articulação do Tornozelo/fisiologia
8.
Eur J Paediatr Neurol ; 44: 1-8, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36706682

RESUMO

INTRODUCTION: Due to the heterogeneous clinical presentation of spastic cerebral palsy (SCP), which makes spasticity treatment challenging, more insight into the complex interaction between spasticity and altered muscle morphology is warranted. AIMS: We studied associations between spasticity and muscle morphology and compared muscle morphology between commonly observed spasticity patterns (i.e. different muscle activation patterns during passive stretches). METHODS: Spasticity and muscle morphology of the medial gastrocnemius (MG) and semitendinosus (ST) were defined in 74 children with SCP (median age 8 years 2 months, GMFCS I/II/III: 31/25/18, bilateral/unilateral: 46/27). Using an instrumented assessment, spasticity was quantified as the difference in muscle activation recorded during passive stretches at low and high velocities and was classified in mixed length-/velocity-dependent or pure velocity-dependent activation patterns. Three-dimensional freehand ultrasound was used to assess muscle morphology (volume and length) and echogenicity intensity (as a proxy for muscle quality). Spearman correlations and Mann-Whitney-U tests defined associations and group differences, respectively. RESULTS: A moderate negative association (r = -0.624, p < 0.001) was found between spasticity and MG muscle volume, while other significant associations between spasticity and muscle morphology parameters were weak. Smaller normalized muscle volume (MG p = 0.004, ST p=<0.001) and reduced muscle belly length (ST p = 0.015) were found in muscles with mixed length-/velocity-dependent patterns compared to muscles with pure velocity-dependent patterns. DISCUSSION: Higher spasticity levels were associated with smaller MG and ST volumes and shorter MG muscles. These muscle morphology alterations were more pronounced in muscles that activated during low-velocity stretches compared to muscles that only activated during high-velocity stretches.


Assuntos
Paralisia Cerebral , Humanos , Criança , Paralisia Cerebral/complicações , Paralisia Cerebral/diagnóstico por imagem , Espasticidade Muscular/etiologia , Espasticidade Muscular/complicações , Músculo Esquelético/diagnóstico por imagem , Ultrassonografia
9.
Front Bioeng Biotechnol ; 10: 1002731, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277379

RESUMO

Muscle-driven simulations have been widely adopted to study muscle-tendon behavior; several generic musculoskeletal models have been developed, and their biofidelity improved based on available experimental data and computational feasibility. It is, however, not clear which, if any, of these models accurately estimate muscle-tendon dynamics over a range of walking speeds. In addition, the interaction between model selection, performance criteria to solve muscle redundancy, and approaches for scaling muscle-tendon properties remain unclear. This study aims to compare estimated muscle excitations and muscle fiber lengths, qualitatively and quantitatively, from several model combinations to experimental observations. We tested three generic models proposed by Hamner et al., Rajagopal et al., and Lai-Arnold et al. in combination with performance criteria based on minimization of muscle effort to the power of 2, 3, 5, and 10, and four approaches to scale the muscle-tendon unit properties of maximum isometric force, optimal fiber length, and tendon slack length. We collected motion analysis and electromyography data in eight able-bodied subjects walking at seven speeds and compared agreement between estimated/modelled muscle excitations and observed muscle excitations from electromyography and computed normalized fiber lengths to values reported in the literature. We found that best agreement in on/off timing in vastus lateralis, vastus medialis, tibialis anterior, gastrocnemius lateralis, gastrocnemius medialis, and soleus was estimated with minimum squared muscle effort than to higher exponents, regardless of model and scaling approach. Also, minimum squared or cubed muscle effort with only a subset of muscle-tendon unit scaling approaches produced the best time-series agreement and best estimates of the increment of muscle excitation magnitude across walking speeds. There were discrepancies in estimated fiber lengths and muscle excitations among the models, with the largest discrepancy in the Hamner et al. model. The model proposed by Lai-Arnold et al. best estimated muscle excitation estimates overall, but failed to estimate realistic muscle fiber lengths, which were better estimated with the model proposed by Rajagopal et al. No single model combination estimated the most accurate muscle excitations for all muscles; commonly observed disagreements include onset delay, underestimated co-activation, and failure to estimate muscle excitation increments across walking speeds.

10.
Scand J Med Sci Sports ; 32(10): 1444-1455, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35839378

RESUMO

While it is well recognized that the preferred stride frequency (PSF) in running closely corresponds to the metabolically optimal frequency, the underlying mechanisms are still unclear. Changes in joint kinematics when altering stride frequency will affect the muscle-tendon unit lengths and potentially the efficiency of muscles crossing these joints. Here, we investigated how fascicle kinematics and forces of the triceps surae muscle, a highly energy consuming muscle, are affected when running at different stride frequencies. Twelve runners ran on a force measuring treadmill, adopting five different frequencies (PSF; PSF ± 8%; PSF ± 15%), while we measured joint kinematics, whole-body energy expenditure, triceps surae muscle activity, and soleus (SOL; N = 10) and gastrocnemius medialis (GM; N = 12) fascicle kinematics. In addition, we used dynamic optimization to estimate SOL and GM muscle forces. We found that SOL and GM mean muscle fascicle length during stance followed an inverted U-relationship with the longest fascicle lengths occurring at PSF. Fascicle lengths were shortest at frequencies lower than PSF. In addition, average SOL force was greater at PSF-15% compared with PSF. Overall, our results suggest that reduced SOL and GM muscle fascicle lengths, associated with reduced muscle force potential, together with greater SOL force demand, contribute to the increased whole-body energy expenditure when running at lower than PSF. At higher stride frequencies, triceps surae muscle kinematics and force production were less affected suggesting that increased energy expenditure is rather related to higher cost of leg swing and greater cost of force production.


Assuntos
Perna (Membro) , Corrida , Fenômenos Biomecânicos/fisiologia , Humanos , Músculo Esquelético/fisiologia , Corrida/fisiologia , Tendões/fisiologia
11.
PLoS Comput Biol ; 18(6): e1009338, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35675227

RESUMO

Optimal control simulations have shown that both musculoskeletal dynamics and physiological noise are important determinants of movement. However, due to the limited efficiency of available computational tools, deterministic simulations of movement focus on accurately modelling the musculoskeletal system while neglecting physiological noise, and stochastic simulations account for noise while simplifying the dynamics. We took advantage of recent approaches where stochastic optimal control problems are approximated using deterministic optimal control problems, which can be solved efficiently using direct collocation. We were thus able to extend predictions of stochastic optimal control as a theory of motor coordination to include muscle coordination and movement patterns emerging from non-linear musculoskeletal dynamics. In stochastic optimal control simulations of human standing balance, we demonstrated that the inclusion of muscle dynamics can predict muscle co-contraction as minimal effort strategy that complements sensorimotor feedback control in the presence of sensory noise. In simulations of reaching, we demonstrated that nonlinear multi-segment musculoskeletal dynamics enables complex perturbed and unperturbed reach trajectories under a variety of task conditions to be predicted. In both behaviors, we demonstrated how interactions between task constraint, sensory noise, and the intrinsic properties of muscle influence optimal muscle coordination patterns, including muscle co-contraction, and the resulting movement trajectories. Our approach enables a true minimum effort solution to be identified as task constraints, such as movement accuracy, can be explicitly imposed, rather than being approximated using penalty terms in the cost function. Our approximate stochastic optimal control framework predicts complex features, not captured by previous simulation approaches, providing a generalizable and valuable tool to study how musculoskeletal dynamics and physiological noise may alter neural control of movement in both healthy and pathological movements.


Assuntos
Movimento , Contração Muscular , Simulação por Computador , Humanos , Modelos Biológicos , Movimento/fisiologia , Contração Muscular/fisiologia , Músculos , Equilíbrio Postural/fisiologia
12.
Front Hum Neurosci ; 16: 861136, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721358

RESUMO

Prolonging ambulation is an important treatment goal in children with Duchenne muscular dystrophy (DMD). Three-dimensional gait analysis (3DGA) could provide sensitive parameters to study the efficacy of clinical trials aiming to preserve ambulation. However, quantitative descriptions of the natural history of gait features in DMD are first required. The overall goal was to provide a full delineation of the progressive gait pathology in children with DMD, covering the entire period of ambulation, by performing a so-called mixed cross-sectional longitudinal study. Firstly, to make our results comparable with previous literature, we aimed to cross-sectionally compare 31 predefined gait features between children with DMD and a typically developing (TD) database (1). Secondly, we aimed to explore the longitudinal changes in the 31 predefined gait features in growing boys with DMD using follow-up 3DGA sessions (2). 3DGA-sessions (n = 124) at self-selected speed were collected in 27 boys with DMD (baseline age: 4.6-15 years). They were repeatedly measured over a varying follow-up period (range: 6 months-5 years). The TD group consisted of 27 children (age: 5.4-15.6 years). Per measurement session, the spatiotemporal parameters, and the kinematic and kinetic waveforms were averaged over the selected gait cycles. From the averaged waveforms, discrete gait features (e.g., maxima and minima) were extracted. Mann-Whitney U tests were performed to cross-sectionally analyze the differences between DMD at baseline and TD (1). Linear mixed effect models were performed to assess the changes in gait features in the same group of children with DMD from both a longitudinal (i.e., increasing time) as well as a cross-sectional perspective (i.e., increasing baseline age) (2). At baseline, the boys with DMD differed from the TD children in 17 gait features. Additionally, 21 gait features evolved longitudinally when following-up the same boys with DMD and 25 gait features presented a significant cross-sectional baseline age-effect. The current study quantitatively described the longitudinal alterations in gait features in boys with DMD, thereby providing detailed insight into how DMD gait deteriorates. Additionally, our results highlight that gait features extracted from 3DGA are promising outcome measures for future clinical trials to quantify the efficacy of novel therapeutic strategies.

13.
PLoS One ; 17(1): e0256311, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35077455

RESUMO

Physics-based predictive simulations have been shown to capture many salient features of human walking. Yet they often fail to produce realistic stance knee and ankle mechanics. While the influence of the performance criterion on the predicted walking pattern has been previously studied, the influence of musculoskeletal mechanics has been less explored. Here, we investigated the influence of two mechanical assumptions on the predicted walking pattern: the complexity of the foot model and the stiffness of the Achilles tendon. We found, through three-dimensional muscle-driven predictive simulations of walking, that modeling the toes, and thus using two-segment instead of single-segment foot models, contributed to robustly eliciting physiological stance knee flexion angles, knee extension torques, and knee extensor activity. Modeling toes also slightly decreased the first vertical ground reaction force peak, increasing its agreement with experimental data, and improved stance ankle kinetics. It nevertheless slightly worsened predictions of ankle kinematics. Decreasing Achilles tendon stiffness improved the realism of ankle kinematics, but there remain large discrepancies with experimental data. Overall, this simulation study shows that not only the performance criterion but also mechanical assumptions affect predictive simulations of walking. Improving the realism of predictive simulations is required for their application in clinical contexts. Here, we suggest that using more complex foot models might contribute to such realism.


Assuntos
Joelho/fisiologia , Músculo Esquelético/fisiologia , Caminhada/fisiologia , Tendão do Calcâneo/fisiologia , Fenômenos Biomecânicos , Simulação por Computador , Humanos
14.
Front Sports Act Living ; 3: 714555, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34746773

RESUMO

Both resistance training (RT) and perturbation-based training (PBT) have been proposed and applied as interventions to improve reactive balance performance in older adults. PBT is a promising approach but the adaptations in underlying balance-correcting mechanisms through which PBT improves reactive balance performance are not well-understood. Besides it is unclear whether PBT induces adaptations that generalize to movement tasks that were not part of the training and whether those potential improvements would be larger than improvements induced by RT. We performed two training interventions with two groups of healthy older adults: a traditional 12-week RT program and a 3-week PBT program consisting of support-surface perturbations of standing balance. Reactive balance performance during standing and walking as well as a set of neuro-muscular properties to quantify muscle strength, sensory and motor acuity, were assessed pre- and post-intervention. We found that both PBT and RT induced training specific improvements, i.e., standing PBT improved reactive balance during perturbed standing and RT increased strength, but neither intervention affected reactive balance performance during perturbed treadmill walking. Analysis of the reliance on different balance-correcting strategies indicated that specific improvements in the PBT group during reactive standing balance were due to adaptations in the stepping threshold. Our findings indicate that the strong specificity of PBT can present a challenge to transfer improvements to fall prevention and should be considered in the design of an intervention. Next, we found that lack of improvement in muscle strength did not limit improving reactive balance in healthy older adults. For improving our understanding of generalizability of specific PBT in future research, we suggest performing an analysis of the reliance on the different balance-correcting strategies during both the training and assessment tasks.

15.
Sci Adv ; 7(39): eabi7348, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34550734

RESUMO

Locomotion has influenced the ecology, evolution, and extinction of species throughout history, yet studying locomotion in the fossil record is challenging. Computational biomechanics can provide novel insight by mechanistically relating observed anatomy to whole-animal function and behavior. Here, we leverage optimal control methods to generate the first fully predictive, three-dimensional, muscle-driven simulations of locomotion in an extinct terrestrial vertebrate, the bipedal non-avian theropod dinosaur Coelophysis. Unexpectedly, our simulations involved pronounced lateroflexion movements of the tail. Rather than just being a static counterbalance, simulations indicate that the tail played a crucial dynamic role, with lateroflexion acting as a passive, physics-based mechanism for regulating angular momentum and improving locomotor economy, analogous to the swinging arms of humans. We infer this mechanism to have existed in many other bipedal non-avian dinosaurs as well, and our methodology provides new avenues for exploring the functional diversity of dinosaur tails in the future.

16.
PLoS Comput Biol ; 17(6): e1008369, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34170903

RESUMO

Standing and walking balance control in humans relies on the transformation of sensory information to motor commands that drive muscles. Here, we evaluated whether sensorimotor transformations underlying walking balance control can be described by task-level center of mass kinematics feedback similar to standing balance control. We found that delayed linear feedback of center of mass position and velocity, but not delayed linear feedback from ankle angles and angular velocities, can explain reactive ankle muscle activity and joint moments in response to perturbations of walking across protocols (discrete and continuous platform translations and discrete pelvis pushes). Feedback gains were modulated during the gait cycle and decreased with walking speed. Our results thus suggest that similar task-level variables, i.e. center of mass position and velocity, are controlled across standing and walking but that feedback gains are modulated during gait to accommodate changes in body configuration during the gait cycle and in stability with walking speed. These findings have important implications for modelling the neuromechanics of human balance control and for biomimetic control of wearable robotic devices. The feedback mechanisms we identified can be used to extend the current neuromechanical models that lack balance control mechanisms for the ankle joint. When using these models in the control of wearable robotic devices, we believe that this will facilitate shared control of balance between the user and the robotic device.


Assuntos
Posição Ortostática , Caminhada , Articulação do Tornozelo/fisiologia , Fenômenos Biomecânicos , Humanos , Músculo Esquelético/fisiologia , Robótica/instrumentação , Dispositivos Eletrônicos Vestíveis
17.
Med Sci Sports Exerc ; 53(10): 2111-2118, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33935233

RESUMO

PURPOSE: Runners naturally adopt a stride frequency closely corresponding with the stride frequency that minimizes energy consumption. Although the concept of self-optimization is well recognized, we lack mechanistic insight into the association between stride frequency and energy consumption. Altering stride frequency affects lower extremity joint power; however, these alterations are different between joints, possibly with counteracting effects on the energy consumption during ground contact and swing. Here, we investigated the effects of changing stride frequency from a joint-level perspective. METHODS: Seventeen experienced runners performed six running trials at five different stride frequencies (preferred stride frequency (PSF) twice, PSF ± 8%, PSF ± 15%) at 12 km·h-1. During each trial, we measured metabolic energy consumption and muscle activation, and collected kinematic and kinetic data, which allowed us to calculate average positive joint power using inverse dynamics. RESULTS: With decreasing stride frequency, average positive ankle and knee power during ground contact increased (P < 0.01), whereas average positive hip power during leg swing decreased (P < 0.01). Average soleus muscle activation during ground contact also decreased with increasing stride frequency (P < 0.01). In addition, the relative contribution of positive ankle power to the total positive joint power during ground contact decreased (P = 0.01) with decreasing stride frequency, whereas the relative contribution of the hip during the full stride increased (P < 0.01) with increasing stride frequency. CONCLUSIONS: Our results provide evidence for the hypothesis that the optimal stride frequency represents a trade-off between minimizing the energy consumption during ground contact, associated with higher stride frequencies, without excessively increasing the cost of leg swing or reducing the time available to produce the necessary forces.


Assuntos
Articulação do Tornozelo/fisiologia , Articulação do Quadril/fisiologia , Articulação do Joelho/fisiologia , Perna (Membro)/fisiologia , Corrida/fisiologia , Adulto , Fenômenos Biomecânicos , Metabolismo Energético , Feminino , Marcha/fisiologia , Humanos , Cinética , Masculino , Músculo Esquelético/fisiologia , Adulto Jovem
19.
PLoS Comput Biol ; 17(4): e1008843, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33793558

RESUMO

The arrangement and physiology of muscle fibres can strongly influence musculoskeletal function and whole-organismal performance. However, experimental investigation of muscle function during in vivo activity is typically limited to relatively few muscles in a given system. Computational models and simulations of the musculoskeletal system can partly overcome these limitations, by exploring the dynamics of muscles, tendons and other tissues in a robust and quantitative fashion. Here, a high-fidelity, 26-degree-of-freedom musculoskeletal model was developed of the hindlimb of a small ground bird, the elegant-crested tinamou (Eudromia elegans, ~550 g), including all the major muscles of the limb (36 actuators per leg). The model was integrated with biplanar fluoroscopy (XROMM) and forceplate data for walking and running, where dynamic optimization was used to estimate muscle excitations and fibre length changes throughout both gaits. Following this, a series of static simulations over the total range of physiological limb postures were performed, to circumscribe the bounds of possible variation in fibre length. During gait, fibre lengths for all muscles remained between 0.5 to 1.21 times optimal fibre length, but operated mostly on the ascending limb and plateau of the active force-length curve, a result that parallels previous experimental findings for birds, humans and other species. However, the ranges of fibre length varied considerably among individual muscles, especially when considered across the total possible range of joint excursion. Net length change of muscle-tendon units was mostly less than optimal fibre length, sometimes markedly so, suggesting that approaches that use muscle-tendon length change to estimate optimal fibre length in extinct species are likely underestimating this important parameter for many muscles. The results of this study clarify and broaden understanding of muscle function in extant animals, and can help refine approaches used to study extinct species.


Assuntos
Simulação por Computador , Extinção Biológica , Membro Posterior/fisiologia , Locomoção , Modelos Biológicos , Fibras Musculares Esqueléticas/fisiologia , Paleógnatas/fisiologia , Algoritmos , Animais , Fenômenos Biomecânicos , Membro Posterior/anatomia & histologia , Tendões/fisiologia
20.
Ann Biomed Eng ; 49(9): 2311-2322, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33851322

RESUMO

This study aims to propose a new optimization framework for solving spine kinematics based on skin-mounted markers and estimate subject-specific mechanical properties of the intervertebral joints. The approach enforces dynamic consistency in the entire skeletal system over the entire time-trajectory while personalizing spinal stiffness. 3D reflective markers mounted on ten vertebrae during spine motions were measured in ten healthy volunteers. Biplanar X-rays were taken during neutral stance of the subjects wearing the markers. Calculated spine kinematics were compared to those calculated using inverse kinematics (IK) and IK with imposed generic kinematic constraints. Calculated spine kinematics compared well with standing X-rays, with average root mean square differences of the vertebral body center positions below 10.1 mm and below [Formula: see text] for joint orientation angles. For flexion/extension and lateral bending, the lumbar rotation distribution patterns, as well as the ranges of rotations matched in vivo literature data. The approach outperforms state-of-art IK and IK with constraints methods. Calculated ratios reflect reduced spinal stiffness in low-resistance zone and increased stiffness in high-resistance zone. The patterns of calibrated stiffness were consistent with previously reported experimentally determined patterns. This approach will further our insight into spinal mechanics by increasing the physiological representativeness of spinal motion simulations.


Assuntos
Coluna Vertebral/fisiologia , Idoso , Fenômenos Biomecânicos , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Movimento/fisiologia , Modelagem Computacional Específica para o Paciente , Radiografia , Coluna Vertebral/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...